The Derivative of Brownian Motion is White Gaussian Noise
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This article derives the relation between white Gaus-
sian noise and Brownian motion. This is very impor-
tant the Kolmogorov backwards/forwards equation
and in general It6 calculus.

First the definition of white noise.

Definition 0.1. (White noise) White noise is a ran-
dom variable w; such that P [w|w,] = P [w]Vt >
TelT.

This implies the past history contains no informa-
tion on the future. We then have White Gaussian
Noise is a White Noise process that is also normally
distributed.

It is called "white Gaussian" because, consider a
Gaussian process with the following correlation func-
tion:
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Then the power spectral density is:
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Now let #; ~ N (0,0%t) be a Brownian process.
Then we have:
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Similarly, we have:

0 0
Citit (t T) aiacwtmt (ty T) =
29 T ifr<t
87' t | t 7>t
0 ifr<t 2
a{ ifr>¢ 7007 ()
And so we have:
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Thus we have that the derivative of the covariance
matrix for Brownian motion is the same as the co-
variance matrix for white Gaussian noise, and so the
derivative of Brownian motion is white Gaussian noise:
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Note though that Brownian motion is well-defined,
but white Gaussian noise is ill-defined, so we will prefer
to work with the Brownian motion random variable as
opposed to the white Gaussian noise random variable:
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This is convenient because we can just add white
Gaussian noise, which is ill-defined, to a dynamic
system and then change it to Brownian motion, which
is well-defined.
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