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The goal of this short article is to quickly review logistic regression, softmax
and cross-entropy so that one has a working knowledge of these tools.

1 Problem Setting
Given a dataset D := {(xn, yn)}n=1,2,...,N of N -many samples of input-output
pairs (xn, yn), where xn ∈ Rd is the input to be classified, and yn ∈ [0, 1]

K is
the output label, the goal is to find a probability distribution that assigns to
each xn the correct probability label yn = [0, . . . , 0, 1, 0, . . . , 0], where the 1 is at
the kth index.

We can think of this as a regression problem, in the sense of finding a map
hΘ : Rd → [0, 1]

K defined by hΘ : x 7→ hΘ (x) such that
∑K

k=1 hΘ (x)k =
1, where Θ are the model parameters over some general type of function h.
We can then interpret hΘ (x)k as being the probability that input x belongs
to class k, i.e. PΘ (y = k|x) := hΘ (x)k. With this notation, hΘ (x) is the
histogram of probabilities of x, while hΘ (x)k is the kth region of the histogram,
i.e. the probability that x is of class k (and of course we want the histogram of
probabilities to sum to 1).

2 Cross Entropy
The Kullback-Leibler divergence is a way of measuring the distance between two
probability distributions. It is not a proper metric in the sense of metric spaces,
but it tells us the number of bits required to construct one distribution from
another, so one can think of the two distributions as being a certain number
of bits apart. Suppose for input-output pair (xn, yn) the learned distribution
is PΘ (y|xn) := hΘ (xn) while the true distribution is Q (y|xn) = yn (which is
usually a vector with a 1 at the kth element and zeros everywhere else), then
the Kullback-Leibler divergence is defined:

KL (Q||PΘ) :=

K∑
k=1

Q (y = k|xn) log
Q (y = k|xn)

PΘ (y = k|xn)
(1)

We can expand this into two terms, namely in terms of the entropy H (Q) :=

−
∑K

k=1 Q (y = k|xn) logQ (y = k|xn) as well as the cross entropy:
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XE (Q,PΘ) := −
K∑

k=1

Q (y = k|xn) logPΘ (y = k|xn) (2)

In this form, minimizing KL (Q||PΘ) = −H (Q) + XE (Q,PΘ) with respect
to the parameters Θ through, say, some gradient descent search, only the cross
entropy term is dependent on Θ and so that is the only term we need to consider
in the optimiziation.

It is important to note that XE (Q,PΘ) is linear in logPΘ (y = k|xn), which
is important to keep in mind for our discussion on the logistic regression.

3 Logistic Regression

Suppose we have some model regression function hΘ : Rd → [0, 1]
K , defined by

hΘ : x 7→ hΘ (x), interpreted as being the probability that input x belongs to
class k, i.e. PΘ (y = k|x) := hΘ (x)k.

Logistic regression then assumes that log probabilities are themselves linear,
i.e. logPΘ (yn = k|xn) = Wk ·xn+C, whereWk ∈ RK and C ∈ R is some normal-
ization constant. To find C, we have

∑K
k=1 PΘ (yn = k|xn) = eC

∑K
k=1 e

Wk·xn =
1, so we define the partition function as follows:

Z :=

K∑
k=1

eWk·xn = e−C (3)

With this new (re-)definition of the normalization constant, we then define
the log-probability:

logPΘ (yn = k|xn) = Wk · xn − logZ (4)

This is written for specifically the probability of class k. To see the probability
of a given x belonging to class y = k, we have the following:

PΘ (y = k|x) =
1

Z
eWk·x (5)

This is the softmax classifier. If instead we are interested in the entire
histogram of probabilities we can write:

logPΘ (y|x) = W · x− logZ (6)

where W ∈ RK×K and the y-argument is left open denoting that it is over all
classes.

We then have the final form of the cross entropy:

XE (Q,PΘ) := −
N∑

n=1

K∑
k=1

Q (y = k|xn) [W · xn − logZ] (7)
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