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This short article gives an intuitive way to under-
stand the Fourier transform. I’ve found it difficult
to find this type of explanation of what the Fourier
transform is; thus the motivation for this short guide.
For example, very few signal processing or quantum
mechanics textbooks explain the difference between
the Hamel and Schauder basis, which is incredibly
important for understanding Fourier analysis.

Given a signal x (t), which is a map x : R→ R, the
goal is to understand its frequency contents, i.e. con-
struct a function x̂ (f) that is a function of frequency
and produces an amplitude at that frequency.

1 Fourier Series

If the signal is periodic over
[−T

2 , T2
]
, i.e. (x (t) =

x (t+ T )), then one can do a Fourier series expansion
with complex exponentials over this domain.

x (t) =

∞∑
n=−∞

Ane
i2π n

T t (1)

The trick here is that complex exponentials (sines
and cosines) form an orthonormal (Schauder) basis
over L2

([−T
2 , T2

])
with the standard inner product

〈., .〉. This means that if em, en ∈ L2

([−T
2 , T2

])
, then:

〈em, en〉 :=
1

T

∫ T
2

−T
2

e∗m (t) en (t) dt = δmn (2)

where δmn is 0 if m 6= n and is 1 if m = n. In our case
en is a basis function map en :

[−T
2 , T2

]
→ C defined:

en (t) := ei2π
n
T t (3)

Explicitly, multiplying both sides of Equation 1 by
e−i2π

m
T t and integrating over the domain yields:

∫ T
2

−T
2

x (t′) e−i2π
m
T t
′
dt′ =

∞∑
n=−∞

An

∫ T
2

−T
2

ei2π
n−m

T t′dt′

(4)
The integral on the right hand side is equal to T if

m = n and 0 if m 6= n. This equation reduces to the
following:

Am =
1

T

∫ T
2

−T
2

x (t′) e−i2π
m
T t
′
dt′ (5)

These are the coefficients to the expansion of the
signal in the complex exponential basis from Equa-
tion 1.

2 Fourier Transform
Combining Equations 1 and 5 yields:

x (t) =

∞∑
n=−∞

(
1

T

∫ T
2

−T
2

x (t′) e−i2π
n
T t
′
dt′

)
ei2π

n
T t

(6)
This is very important. Define fn := n

T , then
∆fn := fn+1− fn = 1

T , and we have that ∆fn → 0 as
T →∞. This then leads the coefficients/components
of the vector to be rewritten as An ≡ A (fn) =
1
T

∫ T
2
−T
2

x (t′) e−i2πfnt
′
dt′. We rewrite Equation 6 in

terms of our defined frequency variables:

x (t) =

∞∑
n=−∞

(∫ T
2

−T
2

x (t′) e−i2πfnt
′
dt′

)
ei2πfnt∆fn

(7)
So here, roughly speaking, fn := n

T → f as T →
∞ and ∆fn := n+1

T − n
T = 1

T → df as T → ∞.
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These vagaries are made more clear in Section 3 where
it is formulated in terms of taking the closure of
the countable basis in a Hilbert space to form an
uncountable basis for the Hilbert space.
Remark. x is T -periodic, but if T → ∞ then x is
no longer periodic over (−∞,∞). However, we are
still expanding x with periodic basis functions ei2πft
which is not very intuitive. This is one of the many
theoretical reasons for using wavelets as a different
kind of basis function.
Remark. fn := n

T is a countable index and f is an
uncountable index, so as we go to the integral we
must take the closure over the basis vectors. More
specifically, the functions en : t 7→ e−i2π

n
T t are indexed

by the countable index set n ∈ Z, but we need to pass
it to an uncountable index set f ∈ R, so we take the
closure of the set of basis vectors {en}n∈Z after passing
to the limit T →∞, which gives us the uncountable
set of basis vectors {ef}f∈R where ef : t 7→ e−i2πft.

x (t) =

∫ ∞
−∞

(∫ ∞
−∞

x (t′) e−i2πft
′
dt′
)
ei2πftdf (8)

To explicitly relate it to the Fourier series, we write
A (f) :=

∫∞
−∞ x (t′) e−i2πft

′
dt′ from Equation 5, but

of course this is the Fourier transform so it gets the
following symbol:

x̂ (f) :=

∫ ∞
−∞

x (t) e−i2πftdt (9)

To make an explicit comparison, in the countable
basis case we have:

x (t) =

∞∑
n=−∞

x̂ [n] ei2π
n
T t (10)

Where we wrote x̂ [n] := An. This is in comparison
to the uncountable basis case:

x (t) =

∫ ∞
−∞

x̂ (f) ei2πftdf (11)

This leads to the interpretation that the Fourier
transform of a signal are the coefficients to the expan-
sion of the signal in the uncountable basis {ef}f∈R
defined by ef : t→ ef (t) := ei2πft.

3 Notes on Hilbert spaces
Equation 3 allows us to write Equation 1 as:

x (t) =

∞∑
n=−∞

Anen (t) (12)

Now remember (H,+H, ·H) is a vector space (in
our case the set H = L2

([−T
2 , T2

])
), where vector ad-

dition and scalar multiplication are defined pointwise
(for x, y ∈ H then (x+H y) (t) := x (t)+Cy (t), and for
λ ∈ C as the scalar field, then (λ ·H x) (t) := λ·Cx (t)).
In this way, functions are, roughly speaking, infinite
dimensional vectors. The C-vector space (H,+H, ·H)
with the (sesquilinear) inner product 〈·, ·〉 : H×H → R
together as the tuple (H,+H, ·H, 〈., .〉) is called a
Hilbert space.
An enormously important property of the Hilbert

space is that the inner product 〈·, ·〉 : H×H → R in-
duces a norm || · || : H → R defined by ||x|| :=

√
〈x, x〉,

and the Hilbert space is complete with respect to this
norm (i.e. every Cauchy sequence converges). This is
a very important distinction between the Hamel basis
(finite) and Schauder basis (infinite). The Hamel basis
can only represent a vector as a finite sum (as in the
case in the standard linear algebra course). In com-
parison a Schauder basis can both represent vectors
as a finite sum (e.g. the signal is a finite sum of sine
waves), as well as an infinite sum and converge to the
vector in the limit. In this way the Schauder basis
has much greater expressive power.

Remark. Note that em ∈ L2 (R) is a function. em (t)
is the value of the function em at the point t ∈ R, i.e.
em (t) is a point, not a function. The function is em
and is defined by how it maps a point t ∈ R to a new
point em (t), so in our case we can write em : t 7→
em (t) := e−i2π

m
T t. This is a subtle point, but very

often misunderstood by people in signal processing.
So for example in Equation 2, you can take the inner
product of two functions/vectors em, en ∈ L2 (R) as
〈em, en〉, but to take the inner product of two points
〈em (t) , en (t)〉 is nonsense (the inner product is a
map 〈·, ·〉 : L2 (R)×L2 (R)→ R, and em, en ∈ L2 (R),
whereas em (t) , en (t) /∈ L2 (R). It would be more
clear to write 〈·, ·〉L2

instead of 〈·, ·〉, but it is also just
too much notation).
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To understand Fourier analysis in the context of
(separable) Hilbert spaces, we should really write
Equation 12 as:

x =

∞∑
n=−∞

〈en, x〉 en (13)

where An := 〈en, x〉 (it is a separable Hilbert space
because it has a Shauder basis {en}n∈Z that is (i.)
countable and (ii.) orthonormal). In quantum me-
chanics this is sometimes called inserting the reso-
lution of identity. The only difference between this
and a basis expansion of a vector in a normal linear
algebra course is that this is an infinite dimensional
(Schauder) basis, whereas a standard linear algebra
course mostly deals with finite dimensional (Hamel)
basis. In the uncountably infinite basis case, the sum
in Equation 13 is an integral:

x =

∫ ∞
−∞
〈ef , x〉 efdf (14)

The difference between Equations 13 and 14 is that
Equation 13 expands the signal in a countable basis
en ∈ L2

([−T
2 , T2

])
such that en : t 7→−i2π n

T t, whereas
Equation 14 expands the signal in an uncountable
basis ef ∈ L2 (R) such that ef : t 7→−i2πft for f ∈ R,
but otherwise they are intuitively the same thing.

4 As an operator

The discrete Fourier series is given by:

x̂ [n] :=

∫ T
2

−T
2

x (t′) e−i2π
n
T t
′
dt′ (15)

whereas the Fourier transform is given by:

x̂ (f) :=

∫ ∞
−∞

x (t′) e−i2πft
′
dt′ (16)

The Fourier transform can be understood as an
operator as well. The Fourier operator F : L2 (R)→
L2 (R) (it actually maps between Schwartz spaces),
where we have written x̂ := F (x). As an operator, it
takes functions and maps them to functions. Remem-
ber x is a function and x (t) is a point, so the Fourier

operator F acts on the function x, and is defined by
the value it produces at each point f .

F : x 7→x̂ := F (x)

x̂ (f) := F (x) (f) :=

∫ ∞
−∞

x (t′) e−i2πft
′
dt′

(17)

In this way the Fourier operator is just an operator
that acts on a function and produces a new function,
where the new function is defined pointwise for f ∈ R
(for the Fourier transform), or n ∈ Z (for the Fourier
series).
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